Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes

نویسندگان

  • Florian Hiermeier
  • Jörg Männer
چکیده

Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Closed-form Formulae for Buckling Analysis of Rectangular Tubes under Torsion

The buckling torque may be much less than the yield torque in very thin rectangular tubes under torsion. In this paper, simple closed-form formulae are presented for buckling analysis of long hollow rectangular tubes under torsion. By the presented formulae, one can obtain the critical torque or the critical angle of twist of the tube in terms of its geometrical parameters and material constant...

متن کامل

Design an Equivalent Left Ventricular Assist Device for Medical Equipment Labs

LVAD is a mechanical pump supporting a weak heart function and blood flow. Sometimes, the heart may not recover fast enough to take over the pumping action immediately after surgery, in such patients a temporary support device has been employed to maintain the pumping action until the patient’s own heart recovers. This device can be considered as a temporary alternative before the process of ar...

متن کامل

سلول‌های بنیادی قلبی در یک نگاه: مقاله مروری

It was assumed that the loss of cardiomyocytes is irreversible. The main goal is to develop widely available and clinically applicable treatments for heart diseases. The several studies have showed that the use of stem cells can improve complicacies such as cardiovascular diseases. Stem cells have a potential benefit of the self-renewal and cell differentiation into the cell types that can play...

متن کامل

Modeling Valveless Pumping Mechanisms

Austin J Baird: Modeling valveless pumping mechanisms (Under the direction of Laura Miller) Several mechanisms of valveless pumping are studied numerically. The discussion begins with an introduction into the two well-known driving mechanisms of flow in valveless tubes: impedance pumping and peristalsis. Flow generated from peristalsis and impedance pumping is examined using the immersed bounda...

متن کامل

On the dynamic suction pumping of blood cells in tubular hearts

Around the third week after gestation in embryonic development, the human heart consists only of a valvless tube, unlike a fully developed adult heart, which is multi-chambered. At this stage in development, the heart valves have not formed and so net flow of blood through the heart must be driven by a different mechanism. It is hypothesized that there are two possible mechanisms that drive blo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017